UDC 547.944/945

A. Nabiev, R. Shakirov, and S. Yu. Yunusov

Continuing an investigation of the alkaloids of the epigeal part of $Petilium\ eduardi$ [1], we have separated the combined ether-soluble fraction by means of a citrate-phosphate buffer solution. The alkaloids from the pH 6 fractions in chloroform were chromatographed on a column of alumina. The later eluates yielded the new alkaloid eduardine (I), $C_{27}H_{45}NO_{2}$ with mp 255-257°C (acetone), $[\alpha]_D$ + 7.4° (c 0.875; CHCl₃) ν_{max} 3360 cm⁻¹ (OH), 2930-2860, 1460 cm⁻¹ (-CH₂, -CH₃), 2750 cm⁻¹ (trans-quinolizidine). With acetic anhydride in pyridine, (I) formed an amorphous diacetate (II), ν_{max} 1740, 1250 cm⁻¹ (0-acety1). The oxidation of (I) with chromium trioxide yielded eduardininedione (III) with mp 238-240°C (acetone), ν_{max} 1710 cm⁻¹ (carbonyl in a 6-membered ring).

The mass spectrum of (I) has the peaks of ions with m/e 98, 111, (100%), 112, 124, 125, 139, 149, 150, 178, 218, 358, 360, 386, 397, (M-18), 400 (M-15), 415 M⁺, which are characteristic for the C-nor-D-homosteroid alkaloids of the cevine group [2-6]. Consequently, compound (I) contains the cevanine skeleton [7]. Characterisites of the NMR spectra of (I-III) are given in Table 1 (CDCl₃, JNM-4H-100, HMDS).

The differences in the chemical shifts (CSs) of the $19-CH_3$ protons in (I) and in (II) and (III) show that the two hydroxy groups in (I) are present in rings A and B at C_3 and C_6 [8]. The results of a comparison of the CSs of $19-CH_3$ with those of edpetilidine and petilidine [3, 4] showed that rings A/B, B/C and C/D are trans-linked [9]. The $21-CH_3$ protons in (I) undergo a diamagnetic shift by 0.33 ppm as compared with those of isodihydroimperialine [5] because of the absence from (I) of a tertiary hydroxy group at C_{20} [10]. It follows from the CSs of the $21-CH_3$ protons that rings D/E are trans-linked just as in imperialine [1, 9].

In the NMR spectrum of (II), the protons geminal to the acetyl groups resonate in a stronger field (4.60 ppm). This shows the 3β , 6α -equatorial orientations of the hydroxy groups in (I) [9]. The CSs of the protons of the secondary methyl groups show that in (I) 21-CH₃ possesses the α -equatorial and 27-CH₃ the β -axial orientation [11].

Another confirmation of the basic heterocyclic skeleton (I) is the fact that the oxidation of edpetilidine [1] under the conditions of the oxidation of (I) gave eduardine [1, 2]

Sub- stance	19-CH ₈	21-CH ₃	27-CH _s	OCOCH,	2H. H- C -0- COCH ₃ m
1 11 111	0,76 0,84 0,92	0,67 0,70 0,68	0,99 1,02 1,00	1,99	4,60

TABLE 1. Chemical Shifts (δ. ppm)

Note: s) singlet; d) doublet; m) multiplet.

Institute of the Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 535-536, July-August, 1975. Original article submitted March 25, 1975.

© 1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

and a diketone with mp 238-240°C (acetone), identical with (III) but not identical with petilidinedione [4].

On the basis of the facts given, eduardine has the most probable structure and configuration of 3β , 6α -dihydroxycevanine (I).

LITERATURE CITED

- 1. R. Shakirov, R. N. Nuriddinov, and S. Yu. Yunusov, Dokl. Akad. Nauk UzSSR, No. 9, 23 (1963); Khim. Prirodn. Soedin., 384 (1967).
- 2. R. N. Nuriddinov, R. Shakirov, and S. Yu. Yunusov, Khim. Prirodn. Soedin., 316 (1967).
- 3. R. N. Nuriddinov and S. Yu. Yunusov, Khim. Prirodn. Soedin., 333 (1969).
- 4. R. N. Nuriddinov, B. Babaev, and S. Yu. Yunusov, Khim. Prirodn. Soedin., 261, 332 (1968).
- 5. R. N. Nuriddinov and S. Yu. Yunusov, Khim. Prirodn. Soedin., 458, 767 (1971).
- 6. H. Budzikiewicz, Tetrahedron, 20, 2267 (1964).
- 7. IUPAC-IUB Revised Tentative Rules for the Nomenclature of Steroids, J. Org. Chem., 34, 1517 (1969).
- 8. R. F. Zürcher, Helv. Chim. Acta, 46, 2054 (1963).
- 9. R. N. Nuriddinov and S. Yu. Yunusov, Khim. Prirodn. Soedin., 260, 333, 334 (1968).
- 10. R. Shakirov, M. R. Yagudaev, and S. Yu. Yunusov, Khim. Prirodn. Soedin., 639 (1972).
- 11. T. M. Moynehan, K. Schofied, R. A. Y. Jones, and A. R. Katritzky, J. Chem. Soc., 2637 (1962).